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Executive Summary 

Respiratory diseases in pigs causes suffering in infected animals, impacts the pig industry by 

increasing the cost of production and affects public health by the increased use of 

antimicrobials and the development of antimicrobial resistance. One of the most appropriate 

approaches to minimizing these negative effects is the early detection of infected animals. 

Physiological parameters such as core body temperature, heart rate (HR) and respiration 

rate (RR), could be useful indicators when monitoring illness in pigs. However, their 

assessment normally involves procedures that are invasive, labour intensive and 

consequently not practical for large scale monitoring. The use of cameras together with 

computer-based technology could assist the early detection of physiological changes in pigs 

when these are ill. While the use of thermal infrared (TIR) to measure eye temperature has 

been used more widely, the use of remotely recorded HR and RR in pigs is a novel application.  

This pilot study aimed to (a) validate the use of computer-based technology over RGB (red, 

green, and blue) and thermal infrared imagery to measure HR and RR of pigs, and (b) 

investigate whether eye-temperature, HR and RR recorded remotely could be used to 

identify early signs of respiratory diseases in free-moving pigs housed in a commercial 

piggery. FLIR Duo® Pro R, cameras with a radiometric thermal sensor and a 4K visible RGB 

sensor, were used in this study to obtain the recordings. Computer algorithms were used to 

extract eye-temperature and RR from thermal infrared images, and HR from RGB videos.  

For the validation of these methods, twenty-eight pigs (9 weeks old) were recorded to 

remotely assess HR and RR, which were later compared to HR and RR measures obtained 

with standard methods (stethoscope and visual observations respectively). All correlations 

between remote and standard methods were positive, ranging between r= 0.61 and r= 0.66 

(p< 0.05).  

For the investigation of early detection of respiratory disease, a total of 6 mildly sick pigs 

were identified and compared with 36 healthy pigs (each sick pig paired with six healthy pigs 

from the same pen). These pigs were recorded by overhead cameras and the remotely-

obtained physiological measures were evaluated to identify whether evident changes in 

these measures could be detected before clinical signs were observed. The changes in eye-

temperature and HR remotely obtained showed clear differences between sick and healthy 

pigs before clinical sigs were detected. However, significant changes of RR occurred only in 

a later stage of the illness when clinical signs were more apparent. 

Although this pilot study had some limitations, such as the low number of pigs that were 

only mildly affected by respiratory diseases during the analysed period, the results obtained 

are promising. The results of the present study confirm the utility of computer vision 

technique to rapidly detect physiological changes related to illness in commercial pigs, and 

further research is recommended. Further research should be focused toward continuing the 

development and automatisation of this technology and the further development of 

algorithms to automatically detect individual pigs under commercial conditions, including  

physiological changes of animals in different environmental conditions and severity of 

illness. 
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1. Introduction 

The detection of health challenges affecting pigs is a relevant factor to maintain 

appropriate levels of health and animal welfare within commercial piggeries. The 

early detection of illnesses is crucial to reduce the impact that these have on 

animals and the industry, and to increase the success of the treatments applied [1]. 

Pleuropneumonia is one of the diseases that highly impact the pig industry, which 

easily propagate across pigs between 8 and 16 weeks of age [2]. These diseases are 

known to deteriorate the wellbeing of pigs and increase the cost of production by 

the rate of weight loss and death observed in affected pigs, as well as the increase 

of antibiotics used to prevent and treat these infections [3-7]. Furthermore, the use 

of antibiotics in animals has become a concern due to antimicrobial resistance 

(AMR), which has been observed to increase among animals and humans [8,9]. 

Although the importance of early detection of diseases has been recognised, the 

implementation of effective detection systems has been limited by the difficulty 

and high cost of performing large-scale clinical and serological examination [10]. 

Novel non-invasive methods are being investigated in an attempt to overcome these 

limitations and help stock people to detect diseases at an early stage and take rapid 

action, minimising the propagation of the infection within the herd and reducing 

the use of antibiotics [11]. As part of this attempt, Precision Livestock Farming (PLF) 

has appeared as one of the most appropriate approaches for constant animal 

monitoring and early detection of diseases. For instance, non-invasive methods to 

assess changes in animal behaviour, cough sound and skin temperature are 

investigated for applications to detect illness in several species [11-13].  

In terms of behavioural assessment, automatic systems to detect behavioural 

changes are in early stages of development [13]. Several studies have attempted to 

develop partially or fully-automated systems to asses activity, feeding and drinking 

behaviours, among others. For instance, automatic water meters have been used to 

measure the drinking behaviour of pigs [14]. Although these sensors were observed 

to be more accurate than human observers, these sensors do not consider water 

wastage or individual drinking rate [13,14]. Drinking and feeding behaviour has also 

been studied by using radio-frequency identification (RFID) transponders attached 

to pigs and an RFID antenna placed at feeding and drinking areas, which allows the 

identification of the frequency and duration of visits by individual pigs to the drinker 

and feeder [13,15,16]. Although these studies have shown promising results 

measuring drinking and feeding behaviours, further research is needed to improve 

the accuracy of these methods and the identification of individual pigs when 

multiple transponders are close to one receiver [13,16]. In addition, activity and 

laying behaviour has been assessed through imagery and computer-based techniques 

[17-19]. 

As mentioned before, non-invasive methods to assess coughing in farm animals has 

also been reported. For instance, Silva et al. [20] investigated the use of various 

microphone and a computer algorithm to localise cough attacks, showing a possible 

use of microphones and computer-based methods for visualizing the spread of 

respiratory diseases in pigs. Ferrari et al. [11] also indicated the possible use of 

cough sounds as a warning of developing outbreak of respiratory infections in calves. 
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Similarly to behavioural changes, physiological changes have been linked to 

respiratory diseases in animals. Nevertheless, the methods commonly used to 

measure parameters such as body temperature, heart rate (HR) and respiration rate 

(RR) require human interaction, and they normally are time-consuming and labour-

intensive. For this reason, researchers are also investigating non-invasive 

techniques to measure the changes in these parameters [10,21-25].  

Body temperature is one of the measures that has been extensively used for the 

detection of sick animals. As part of the search for less invasive and more practical 

methods, gastric sensors [26,27] and thermal infrared (TIR) cameras [22,28,29] have 

been studied to detect trends and relevant changes in body temperature of several 

species. In terms of infrared imagery, Polat et al. [12] showed positive results when 

using TIR images to detect subclinical mastitis in cows. Schaefer et al. [30] also 

indicated TIR images to be an useful tool to detect high temperatures related to 

bovine respiratory disease complex (BRD). Moreover, Cook et al. [31] suggested that 

TIR images could be used to detect febrile response to vaccination in groups of 

piglets. 

The measurement of HR and RR of animals through the use of imagery and 

computer-based methods have been less investigated. However, some computer-

based methods have been reported to assess HR and RR in humans [32-35]. These 

studies have used commercial video (red, green and blue; RGB) cameras and TIR 

cameras to obtain images of people’s faces to be processed through computer 

algorithms and determine their pulse and breathing movements, showing promising 

results. Although these methods have been less explored in animals, some studies 

have investigated the possible use of imagery to assess HR [36,37] and RR [25,36,37] 

in farm animals. 

Considering the impact that respiratory disease has on the pig industry in Australia 

and worldwide, and the challenges related to its detection and treatment, this 

project investigated the use of TIR cameras and video cameras in a commercial 

indoor piggery. The aim of this study was to identify whether remote monitoring by 

video (RGB), thermal infrared images and computer algorithms can be used to 

detect early signs of respiratory disease in free-moving pigs housed in groups. The 

result of this project could aid further research and development of this technology 

as a tool to monitor pigs health and welfare, assisting the improvement of 

management of pigs on farms. 
 

 

2. Methodology 

2.1. Cameras and image processing 
 

FLIR Duo® Pro R (FLIR Systems, Wilsonville, OR. USA) cameras were used during this 

project (Figure 1). These combine a high resolution radiometric thermal sensor and 

a 4K visible RGB sensor. The thermal infrared (TIR) sensor had a spectral range of 

7.5 – 13.5 μm, sensitivity < 50 mK, resolution 640 x 512, emissivity of 0.985, and a 

frame rate of 30 Hz per second. The RGB sensor had a resolution of 4000 x 3000 and 

a frame rate of 30 Hz per second. 
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As the second part of this study required continuous monitoring, a storage system 

was developed using Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK). This 

storage system was set to record for 15 minutes, then stop the camera to 

automatically transfer the recordings to an external hard drive (transferring process 

lasted between 15-20 minutes) and after all the data was transferred to the external 

hard drive and deleted from the camera the camera recorded for another 15 

minutes, and so on. 

Collected images were processed using customised algorithms developed in Matlab® 

R2018b (Mathworks Inc. Natick, MA, USA). In the case of TIR images, this algorithm 

firstly extracted the radiometric information of each image, by using FLIR® Atlas 

SDK [36-38]. Secondly, it allowed to select the eye area as the region of interest 

(ROI; selected on the first frame and automatically tracked over the following 

frames), from where the maximum temperature was extracted. The selection of 

eye area as ROIs in this study was based on studies that have shown this area to be 

more practical and accurate when using TIR images to measure body temperature 

[22,39]. 

With the aim of remotely measuring HR over the RGB images, two algorithms were 

integrated. The first algorithm uses computer vision techniques to recognize spatial 

patterns on specific ROIs (eye area) and automatically track them along the video 

[36]. The second algorithm, is based on the photoplethysmography (PPG) principles 

to assess HR changes by detecting changes on both light reflection off and 

transmission through body parts [35]. To assess HR in the present study, the eye 

area was used as ROI because it presents low density hair, and because this area 

has been shown to be usefulness when using imagery in humans and animals [22,32]. 

 Furthermore, for the analysis of respiration rate TIR images were processed, using 

the nose area as ROI. Similarly to the HR analysis, the ROI (nose area) is firstly 

selected and tracked in order to improve the accuracy of the analysis. Subsequently, 

the algorithm extracts the maximum temperature within the ROI (nose area) in each 

frame, which are later used to calculate RR. The calculation is based on the changes 

of temperature that occur due to air flow (inhalation and exhalation), where the 

air that is expelled generates an increase in temperature within the nose area, 

decreasing later when the inhalation occurs [36]. 

 

 
Figure 2: FLIR Duo® Pro R cameras. On (a) Front view of camera. On (b) Top view 
of the camera.  
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2.2. Animals and sample collection 

The facilities and animals used in this project were provided by Rivalea Australia. 
All animal procedures had prior institutional ethical approval (Protocol ID:17V060C) 
under the requirement of the New South Wales Prevention of Cruelty to Animals Act 
(1979) in accordance with the National Health and Medical Research 
Council/Commonwealth Scientific and Industrial Research Organisation/Australian 
Animal Commission Australian Code of Practice for the Care and Use of Animals for 
Scientific Purposes (NHMRC, 2013).  

This project had the aim of (i) validating the proposed algorithms to measure HR 
and RR in pigs and (ii) identify whether these technologies would be able to detect 
physiological changes (eye-temperature, HR and RR) before sick animals display 
clinical signs that would be detected by farm workers. Therefore, this project was 
divided into two parts. “Part one” refers to the study to validate these techniques, 
while “Part two” refers to the study which implemented these techniques for early 
detection of respiratory diseases in pigs under commercial conditions.  

The data management and analysis were conducted in Microsoft Excel, Minitab® 
Statistical Software 18 (Minitab Pty Ltd., Sydney, Australia) and Genstat® for 
Windows 18th Edition (VSN International, Hemel Hempstead, UK). 

 

2.2.1. Part one: Validation study  

A total of twenty-eight post-weaned pigs, at 9 weeks of age, were grouped into two 
adjacent pens (2m x 2.8m). The procedures for this study were performed in 
November of 2019, four days after these pigs were placed in their respective pens. 

A camera (FLIR Duo® Pro R; FLIR Systems, Wilsonville, OR, USA) was located in a 
corner of each pen, attached at a height of 2.5 m and the camera lenses were 
directed to record the largest area of the pen possible (Figure 2). An area in the 
middle of the solid floor (close to the feeder) was selected as the place where pigs 
were individually held during the recording, which was at approximately 2.5-2.8 
metres from the camera. 
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(a) (b) 

Figure 2: Description of camera position. On (a) Image of cameras located at a 
height of 2.5 metres, each camera directed towards a respective pen. On (b) 
Diagram of cameras and pigs’ position during the validation study. 

In order to be able to validate the use of imagery and computer-based techniques 
to measure HR and RR of pigs in commercial settings, each pig was recorded for a 
total of two minutes and each parameter was also measured with a gold-standard 
method during the same period (stethoscope and video-based observations of 
breathing movements, respectively). Each pig was firstly marked with its respective 
number using stock spray and then recorded while being held one minute with the 
face towards the camera, and another minute facing sideways of the camera. During 
this recording period, a skilled technician measured the HR by using a stethoscope 
(3M Littmann™ Cardiology II; Littmann™, St. Paul, Minnesota, USA) to hear the 
number of beats. Due to the challenge of maintaining pigs in the same position for 
a minute and some pigs vocalising while being held, the technician counted the 
beats occurring within 30 seconds and repeated this procedure for another 
consecutive 30-second-period while the pig was toward the camera and two 
consecutive 30-second-periods while the pig was facing sideways. In addition, the 
RR was also measured during the same period by counting the breathing movements 
of the flanks that occurred in one minute. Due to excessive motion and vocalisation, 
it was not possible to hear the HR of one pig in any position, and in three pig when 
they were facing towards the camera. 

Once the images were processed, the HR and RR obtained remotely were compared 
to the HR and RR obtained with the standard methods. Pearson correlation and 
regression analysis were performed to measure the strength of the linear association 
between remotely measured HR and RR with its respective parameter measured 
with standard method (stethoscope for HR and visual observations for RR 
assessment). 

 

2.2.2. Part two: Early detection of respiratory diseases  

Two groups of post-weaned pigs were recorded in two separate periods during 2019-
2020. The first group comprised 20 pigs, which were divided and placed into two 
adjoining pens of 2m x 2.8m metres (10 pigs per pen) at 9 weeks of age. These pigs 
were recorded between 12 and 17 weeks of age (August-September). The second 
group comprised 28 weaned pigs, which were divided and placed into two adjoining 
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pens of 2m x 2.8m metres (14 pigs per pen) at 9 weeks of age. These pigs were 
recorded between the 9 and 20 weeks of age (November-January). 

One camera, together with a storage system and an external hard drive, was located 

in each of the pens by attaching it in a corner of the pen at a height of 2.5 m (Figure 

2). The location of the camera in the current study was chosen so that additional 

information on the behaviour of pigs could be collected, which can also potentially 

be used to identify clinical signs of disease. As the shed was naturally lighted, these 

cameras were set to stop recording during late night to early morning. Recordings 

were obtained for 15 minutes, every 30-35 minutes from 5:00 am to 11:00 pm 

(approximately 30 fifteen-minutes recordings per day). In both groups (both periods 

of recording), after placing the cameras, each pig was marked with a specific 

number before the start of the recording. In addition, pigs were re-marked every 7 

days. 

Pigs were labelled as “sick” or “healthy” based on signs observed (Table 1). The 

clinical observations were performed daily by farm technicians (as part of their 

normal routine) and during one hour every 7 days by an external technician who 

visited the farm, as well as by observing the daily video recordings (performed by 

the same external technician).  When a pig was observed to have two or more 

symptoms shown in Table 1, it was considered to have a respiratory infection and 

was labelled as “sick”. The animals that did not show any symptoms listed in Table 

1 were labelled as “healthy”. From a total of six pigs labelled as “sick” during this 

study, only one of these pigs (referred as ‘S6’) was detected to be sick by the routine 

observations performed by stock people at the farm, and the rest of pigs showed 

very mild symptoms and were only identified as “sick” during close observation of 

the daily video recordings. 

Table 1. Clinical observations used to identify animals with symptoms of respiratory 

disease. 

Symptoms Observations 
Sign of 

illness  

Nasal 

discharge 
None No 

Discharge for several observations Yes 

Coughing No coughing No 

Coughing episodes of 1-3 short coughs at a time Yes 

Laboured  

breathing 
Normal breathing No 

Abdominal breathing Yes 

Laboured breathing, breathing through mouth, head extended Yes 

Lethargy Alert and active No 

Depressed, disinclination to move about, ears laid back Yes 

Recumbent position, reluctance to get up Yes 

Anorexia Eats No 

Not observed eating Yes 

Roughness in coat, tucked in and extremely dehydrated Yes 
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Once “sick” and “healthy” animals were identified and the images obtained were 

evaluates, 6 “healthy” pigs were selected from the same pen where the “sick” pig 

was located, making sure that these six pigs could be observed in all video 

recordings across the period analysed. As the pigs that were labelled “sick” (6 pigs 

in total) were observed to have symptoms in different periods across the study, 

each “sick” pig was paired with six “healthy” pigs from the same pen and during 

the same period, resulting in six groups (a total of 6 “sick” and 36 “healthy” pigs).  

To determine the period that was analysed in each group, the day when pigs were 

labelled as “sick” (based on the clinical observations) was considered as “day 0” 

and 1-2 days before and after “day 0” were analysed to identify whether changes 

of eye-temperature, HR and RR were evident in “sick” pigs before signs of illness 

were visually detected. The days before “day 0” were labelled as negative numbers 

(e.g. -2 and -1) and the days after “day 0” were labelled as positive numbers (e.g. 

+1 and +2). Due to the routine management practices of the farm, some of the 

group/period included the day when pigs received prophylactic antimicrobial 

administered via water (every 2 weeks) or when the sick pig received a dose of 

injectable antibiotic (S6 only). When this occurred within the analysed period, it 

was recorded and considered in the observations. 

Once the physiological parameters were obtained from each group/period, the 

trend of eye-temperature, HR and RR were evaluated within each group and the 

daily mean was calculated per pig. Analysis of variance tests were performed in 

order to evaluate the main effects (Block= groups; Treatment= health status). Plots 

of residuals vs fitted values were evaluated to assess the assumption of constant 

variance. The least significant difference (LSD) was used to test whether these 

physiological parameters were significantly different between “sick” and “healthy” 

pigs the day when symptoms were evident (day 0) and two days before (day -1 and 

day -2). The trend within these group/periods was also visually evaluated to observe 

whether the tendency of the physiological parameters differed between each “sick” 

pig (referred as S)  and its paired “healthy” pigs (referred as H)  across the analysed 

period (4-5 days; 25-30 measurements per day).  

 

3. Outcomes 

3.1. Part one: Validation study 

The data from the comparison between the HR measured with stethoscope and the 

HR obtained from image processing from individual pigs showed good correlation, 

with similar correlation coefficients (r= 0.61 – 0.65) in both positions, being slightly 

higher when pigs were facing sideways of the camera (Table 2, Figure 3). When pigs 

were facing sideways, the computer-based technique, on average, under-estimated 

HR measures (Average Relative Error= 0.11). While the analysis of videos obtained 

when the face of pigs was towards the camera, on average, overestimated the HR 

measures (Average Relative Error= 0.11). Although inaccuracies may have occurred 

from analysis of video data, similarly some of the inaccuracy may have been caused 

by the challenge of manually counting heartrate with a stethoscope while a pig is 



  

 8 

being held. This also resulted in higher heart rates then when pigs are at rest, which 

may reduce the accuracy of measuring heart rate as has been shown by wearable 

heart rate monitors in people. Nevertheless, both orientations resulted in good 

correlations in measurements, which indicates that as long as the eye area is visible, 

HR measures of free moving pigs using RGB cameras can be recorded within a certain 

range of error. To our knowledge, no prior studies have investigated the use of 

similar techniques to measure HR of pigs. However, when comparing the present 

results to the results of a previous study in cattle [36], RGB imagery and computer-

based methods appeared to be more accurate in pigs (r= 0.65) than in cattle (r= 

0.18). This could be related to the low hair concentration and skin colour of pigs, 

which is more similar to the human face, where these techniques have been 

implemented in several studies with promising results [32,33,35,40]. The 

correlation between HR measures shown by the present study is lower than the 

correlation observed in humans by Takano and Ohta [41], who reported a correlation 

coefficient of 0.90 when comparing the human HR provided by pulse oximeters and 

the HR extracted by computer vision techniques that identified the change of 

brightness within the ROI (cheek). However, it was higher than the correlation 

reported by Cheng, et al. [42] when evaluating computer algorithms to assess 

human HR from RGB videos (r = 0.53). The studies that have implemented computer 

vision techniques over RGB videos to measure HR in humans normally involved the 

recording of people’s face within a short distance, with minimum motion and 

controlled light conditions. Although pigs’ motion and light condition are more 

difficult to control in farm settings, placing cameras in feeders or drinking stations 

could provide appropriate conditions and improve correlations, aiding a practical 

and more precise implementation of these techniques to assess HR changes in pigs.  

 

Table 2. Pearson correlation coefficients (r) between heart rate (HR) and 

respiration rate (RR) obtained with standard methods (stethoscope and visual 

observations respectively) and image processing. Two different animal positions 

(toward and sideways) relative to the camera are compared. 

* (p < 0.05)     ** (p < 0.001) 

 

Variable 
Animal 

position 
Method Range Mean (SD) 

Correlation 

Coefficient (r)  

HR 

(BPM) 

Side 
Stethoscope 134-228 165.89 (26) 

0.65** 
C.V. 123-235 164.69 (30) 

Front 
Stethoscope 144-242 187.17 (29) 

0.61* 
C.V. 152-291 201.32 (28) 

RR 

(BPM) 

Side 
Visual observation 39-53 46 (3) 

0.61* 
C.V. 36-60 48 (6) 

Front 
Visual observation 36-53 42 (4) 

0.66** 
C.V.  30-58 45 (9) 
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Figure 3: Regression analysis of the relationship between heart rate (beats per 

minute) obtained with stethoscope (Standard Heart Rate) and the heart rate 

remotely obtained (Remote Heart Rate), when pigs were held in different positions; 

(a) facing sideways, (b) face towards the camera. The solid line shows the line of 

best fit, the dotted lines show the 95% CL. The equation and associated r and P-

value are shown.  

 

In the case of RR measures, these also showed good positive correlations between 

the standard and computer-based methods (r= 0.61 – 0.66), being slightly larger 

when the pigs faced towards the camera (Table 2, Figure 4). The computer-based 

technique, on average, overestimated the RR measures in both positions analysed 

(Average Relative Error= 0.08-0.13). Similarly to the present study, Stewart et. al. 

[25] investigated the use of TIR image recordings to identify the temperature 

changes within the nostrils to assess RR in cattle. The study of Stewart et. al. [25], 

similarly to the present study, reported good agreement between the standard and 

computer-based methods. However, their method involved the observation of the 

recordings and manual counting of air movement from the nostrils, while the 

present study involved the use of an algorithm to facilitate automatic recording. 

Pereira et al. [43] used TIR imagery to measure RR in anesthetised piglets by 

identifying the mechanical chest movements related to the respiratory cycle, 

showing great agreement with the RR measures recorded by the anaesthesia 

machine (mean absolute error averaged= 0.27±0.48 BPM). Although the correlation 

presented by the study above [43] was larger than the correlation presented in the 

present study, the methodology proposed by Pereira et al. [43] was implemented in 

anesthetised animals and was not affected by the motion and variable conditions 

present on commercial farms. 

 

 

 

 

 

 

 

 

 

 
 

(a) 

         

 

 

 

 

 

 

 

 

 
 

(b) 
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Figure 4: Regression analysis of the relationship between respiration rate (breath 
per minute) obtained from visual observations (Standard Respiration Rate) and the 
heart rate remotely obtained (Remote Respiration Rate), when pigs were held in 
different positions; (a) facing sideways, (b) face towards the camera. The solid line 
shows the line of best fit, the dotted lines show the 95% CL. The equation and 
associated r and P-value are shown.  

 

3.2. Part two: Early detection of respiratory diseases 

The physiological parameters remotely assessed were compared across all groups 

(Table 3) and within each group (Figure 5; Figure 6; Figure 7). 

Table 3. Summary of least significant difference (LSD) test between “sick” and 

“healthy” pigs, for eye-temperature (T), heart rate (HR) and respiration rate (RR). 

Indicating the difference between group during the day before (day -1) and the day 

when clinical signs were detected (day 0).  

Variable Day Group Mean 
Least significant 

difference (LSD)  
p-value 

T (°C) 

-1 
Sick 38.97 

0.39* <0.001 
Healthy 37.81 

0 
Sick 39.11 

0.35* <0.001 
Healthy 37.78 

HR (BPM) 

-1 
Sick 83.62 

3.12* 0.001 
Healthy 78.25 

0 
Sick 88.74 

3.93* <0.001 
Healthy 78.64 

RR (BPM) 

-1 
Sick 28.6 

2.3 0.03 
Healthy 26.4 

0 
Sick 30.6 

3.2* 0.006 
Healthy 26.4 

 * Difference between groups is larger than LSD 

 

 

 

 

 

 

 

 

 
 

(a) 

         

 

 

 

 

 

 

 

 
 

(b) 
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When eye-temperature of “sick” and “healthy” pigs was analysed across all groups, 

the analysis of variance showed significantly (p< 0.05) higher eye-temperature in 

‘sick’ pigs than in ‘healthy’ pigs from one day before the clinical symptoms were 

detected (Table 3). The daily average of eye-temperature in “sick” pigs was 1.2°C 

higher than “healthy” pigs (LSD= 0.39) the day before the symptoms were evident 

(day -1), and 1.3°C higher (LSD= 0.35) the day that clinical symptoms were detected 

(day 0). As eye-temperature has been suggested as a good indicator of core body 

temperature [22,44], this would indicate that pigs that are affected by respiratory 

infections have an increase in temperature around 24 hours before evident signs, 

such as cough, lethargy or anorexia among others are observed. These results are 

consistent with the results reported previously by Jorquera-Chavez et al. [37], who 

observed significantly higher eye-temperature in sick animals, compared to healthy 

animals the day after these pigs were inoculated with APP, and 6 hours before the 

detection of clinical symptoms. This is also consistent with the observations of 

Schaefer, et al. [10], who also compared clinical scores and temperatures obtained 

from TIR images for detecting early signs of bovine viral diarrhoea virus (BVDV) in 

calves, reporting clear changes in temperatures remotely obtained several days 

before clinical observations were identified in sick animals. 

Although only one of the sick (S6) animals showed obvious signs of porcine 

respiratory disease (PRD) and was detected as sick by routine observations 

performed by stock people at the farm (treated and removed from the rest of the 

group), the eye-temperature appeared to be higher in most of the “sick” pigs 

(Figure 5). The day before evident symptoms (day -1), the average eye-temperature 

of most “sick” pigs (S1,S3,S4,S5,S6) was observed to differ significantly from the 

average eye-temperature of “healthy” pigs, with a difference ranging between 0.7 

and 2.8°C (LSD= 0.39). Only one “sick” pig (S2) showed a non-significant difference 

(0.008 °C), which could be related to a lower level of infection in this pig compared 

to the rest of pigs. The day when symptoms were detected (day 0), the difference 

between all “sick” pigs and “healthy” pigs were significant and ranged between 0.6 

and 2.9°C (LSD= 0.35). 

In the case of HR, the analysis of variance showed significant difference (p< 0.05) 

of HR between “sick” and “healthy” pigs, across all groups. Similarly to eye-

temperature, the difference of HR also became significant from one day before the 

day when clinical symptoms were detected (Table 3; Figure 6). The daily average 

of HR in “sick” pigs was 5.37 BPM higher than “healthy” pigs (LSD= 3.12) the day 

before the symptoms were evident (day -1), and 10.1 BPM higher (LSD= 3.93) the 

day that clinical symptoms were detected (day 0). This difference between “sick” 

and “healthy” animals agrees with studies that have suggested HR measures as an 

indication of illness in animals [45,46]. Moreover, the present results agree with 

several studies that have observed increased HR in animals presenting respiratory 

infections. For instance, Reinhold, et al. [47] showed that calves affected by C. 

psittaci infection increased their HR up to 160%, compared to the baseline. 

Weingartl, et al. [48] and Geisbert, et al. [49] reported fever and tachycardia as 

some of the first signs in horses inoculated with HeV. Furthermore, HR was observed 

to significantly increase in pigs challenged with Actinobacillus pleuropneumoniae 

(APP), before these pigs showed clinical signs [37]. 

Similarly to the observations on eye-temperature, the same “sick” pig (S2) showed 

a non-significant difference (2.48 BPM), when comparing the HR remotely-measured 
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of “sick” and “healthy” pigs of the same group the day before evident symptoms 

were observed (day -1). In the case of the day when symptoms were detected (day 

0), five of the groups showed a significant difference between the “sick” pigs and 

“healthy” pigs,  ranging between 4.4 and 21.2 BPM. Pig S3 was the only “sick” pig 

that showed no significant difference (2.2 BPM) on day 0. 

 

 

 

Figure 5. Measurements of eye temperature (degrees Celsius) in “sick” and 

“healthy” animals before and after clinical symptoms were detected. Each graph 

represents one group with one sick pig (red continuous line and labelled as S) and 

six healthy pigs (discontinuous lines and labelled as H). “Day 0” represents the day 

when clinical symptoms were detected. The symbol * indicates the day when 

antibiotic was administered via water, and ** indicates when a dose of injectable 

antibiotic was administrated to the sick pig. 
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Figure 6. Measurements of heart rate (beats per minute) in “sick” and “healthy” 

animals before and after clinical symptoms were detected. Each graph represents 

one group with one sick pig (red continuous line and labelled as S) and six healthy 

pigs (discontinuous lines and labelled as H). The symbol * indicates the day when 

antibiotic was administered via water, and ** indicates when a dose of injectable 

antibiotic was administrated to the sick pig. 
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A different trend was observed in the RR measures within all groups (Table 3; Figure 
7). From the analysis performed across groups, the daily average of RR was not 
observed to significantly differ between “sick” and “healthy” pigs the days before 
clinical symptoms were detected. However, the difference in RR between “sick” 
and “healthy” appeared to be significant the day when symptoms were detected in 
“sick” animals (day 0), when “sick” pigs had an average of RR 4.2 BPM higher than 
“healthy” pigs. These observations agree with a previous preliminary study [37], 
which also observed early changes of remotely-measured eye-temperature and HR 
in pigs infected with APP, while the remotely-measured RR of these pigs was 
observed to change at the same time that the clinical signs became evident to 
technicians. These results could indicate that the RR of pigs is affected during a 
more advanced stage of respiratory disease, which could be a result of the infection 
reaching the lungs. Although RR has been used as one of the signs to detect 
respiratory diseases [2,50], the results of  the relationship between RR and the stage 
of these diseases varies between studies. For instance, Van Reeth et al. [50] found 
increased RR in pigs affected by influenza, 24 hours after being challenged with 
H1N2 virus, while Kerr et al. [2] did not find correlation between RR and calcitonin 
receptor (CTR) when using CTR as a sign of APP infection. 

When analysing the trend of RR within each group, only three groups showed 
significantly higher RR (p< 0.05; LSD= 2.3) in “sick” animals than in “healthy” 
animals the day before clinical signs were detected in “sick” pigs (day -1). The most 
severe case (S6) was the one that showed the largest difference that day (S1= 2.6; 
S4= 2.9; S6= 14.4). The day when the signs of illness were detected in the “sick” 
pigs (day 0), all groups showed an increase on the difference of RR between “sick” 
and “healthy” pigs, with the most severe case (S6) reaching 22.6 BPM higher than 
the average of the “healthy” pigs. These differences can also be related to what 
was mentioned above, suggesting that evident changes of RR appear to occur in a 
more advanced stage of the respiratory disease. In addition, all these pigs were only 
showing mild effects of infection, with only S6 identified as sick and treated by farm 
staff. 
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Figure 7. Measurements of respiration rate (breaths per minute) in “sick” and 

“healthy” animals before and after clinical symptoms were detected. Each graph 

represents one group with one sick pig (red continuous line and labelled as S) and 

six healthy pigs (discontinuous lines and labelled as H). The symbol * indicates the 

day when antibiotic was administered via water, and ** indicates when a dose of 

injectable antibiotic was administrated to the sick pig. 

 

Considering the results shown above and the results obtained in a previous pilot 
study [37], these suggest that constant remote monitoring of physiological 
parameters could be a useful tool to detect signs of illness, before the routine 
monitoring performed on commercial farms will indicate the presence of ill pigs. 
Specifically, eye-temperature and HR seem to increase in affected pigs one or two 
days before other symptoms are visible in these pigs. Respiration rate on the other 
hand, appears to increase when other clinical signs are more visible. It is important 
to consider that these remotely-obtained measures were observed one or two days 
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before clinical signs were detected from the observations of continuous recordings. 
Due to the normal workload and workflow of commercial piggeries, continuous 
monitoring is not possible and sick pigs are probably detected at a later stage. This 
could mean that remotely-monitored physiological parameters could indicate signs 
of illness even more than two days before the symptoms are detected by stock 
people. The detection of these early changes could improve the management of 
respiratory diseases in pigs, increasing the success of the treatment, and decreasing 
the rate of severe cases and death. 

In addition to these results, it was also observed that these physiological parameters 
seemed to be influenced by environmental temperature. It was observed that these 
parameters were generally higher and more variable in the pigs included in the 5th 
(group of S5) and 6th (groups of S6) groups. This could be related to the 
environmental temperature registered during the period when these groups were 
analysed. The period analysed for the 5th group presented maximum ambient 
temperatures of ≥35 and the days included in the analysis of the 6th group presented 
maximum ambient temperatures of ≥38. Considering the influence that 
environmental conditions and individual characteristics have on the physiological 
parameters of pigs, these factors together with the comparison within the animal 
and across animals should be considering when studying the automatisation and 
implementation of this technology on farms for continuous monitoring and early 
detection of illness signs. Notwithstanding this variation in environmental 
conditions, early detection of respiratory disease was still possible with the use of 
the remote technologies used in this study. 

Finally, not only the promising results, but also the limitations observed in the 
present study promote further research on the development, automatization and 
implementation of this technology to aid the continuous non-invasive monitoring of 
animals on commercial farms. Further development of validated algorithms would 
assist the application under the variable conditions on commercial farms, perhaps 
with the inclusion of individual and group data as well as environmental conditions.  
As mentioned above, it is hypothesized that the use of these cameras in feeder or 
drinker stations could be a good and practical approach for obtaining consistent and 
good quality images of the face, allowing the remote assessment of physiological 
changes in pigs. 

 

4. Application of Research  

The results of this pilot project are very encouraging and warrant further research 

on the development and implementation of imagery and computer-based methods 

as tools to constantly monitor pigs and other farm animals without the need of 

human interaction. These tools could aid the improvement of animal management 

and consequently animal health, animal welfare and productivity. Furthermore, the 

early detection of sick herds, and even more individual sick animals, would assist in 

improving the outcome of treatments and making the use of medications more 

effective. 
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5. Conclusion  

Imagery and computer algorithms were validated to remotely measuring 

physiological parameters in pigs (HR and RR). Moreover, computer vision techniques 

appeared to be a useful tool to detect early physiological changes in pigs affected 

by respiratory diseases, before the symptoms can be observed by stock people, 

assisting the early detection and management of respiratory diseases in pigs. The 

changes in eye-temperature and heart rate remotely obtained showed clear 

differences between sick and healthy pigs during the period evaluated. However, 

significant changes of RR occurred only in a later stage of the illness.  

Due to the observations resulted from this study, further research is suggested to 

investigate the development of algorithms and automatization of these techniques 

and the possible development of commercial monitoring systems. 

 

6. Limitations/Risks  

A limitation of the present project was the routine administration of antibiotics 

through the water every two weeks, which was part of the normal protocol on the 

farm. This limited the number of sick pigs and the severity of infection. 

Only one pig was considered to be highly affected by respiratory infection, 

individually treated and removed from the pen. The other pigs that started showing 

signs of illness, which were considered sick in this study, showed a decrease of these 

signs shortly after the antibiotic was provided. Therefore, it was not possible to 

determine how remotely obtained parameters behave when there are severe cases 

of respiratory disease or multiple cases in the same pen. 

 

7. Recommendations  

As the results of this pilot study suggest the utility of computer vision technique to 

rapidly detect physiological changes related to disease in commercial pigs, further 

research is recommended. Further research should be focused toward continuing 

the development of algorithms and automatisation of this technology and 

investigating its use at a large-scale to test its performance detecting physiological 

changes of animals under different conditions and severity of disease. 

Although the outcomes of the present study show very promising results, it is 

possible that cameras placed near drinkers may obtain even better quality and 

closer images of the face, possibly improving the image capture and processing, and 

aiding the assessment of changes in eye-temperature, HR and possibly RR of pigs. 

In addition, further research on the development of computer vision techniques 

over RGB videos to assess activity and behavioural changes is suggested in order to 

investigate whether the physiological changes together with automatically recorded 
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behavioural changes can improve the detection and management of diseases in 

commercial piggeries.  

Moreover, further research is recommended to advance the automatisation of these 

techniques and to evaluate how this automatisation can aid the development of a 

monitoring system able to detect and alert relevant changes related to the health 

and wellbeing status under commercial conditions. As mentioned above, to achieve 

this, it is important to study and consider the influence that individual 

characteristics and environmental conditions have on remotely-measured 

physiological parameter of animals. These factors, together with the individual and 

group tendency would need to be integrated into the automatization system in order 

to accurately detect when changes are related to wellbeing or health issues.     
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